¹⁵N NMR assignments and chemical shift analysis of uniformly labeled ¹⁵N calbindin D_{9k} in the apo, $(Cd^{2+})_1$ and $(Ca^{2+})_2$ states

Nicholas J. Skelton^a, Mikael Akke^{a,b}, Johan Kördel^{a,b}, Eva Thulin^b, Sture Forsén^b and Walter J. Chazin^a

"Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA and Department of Physical Chemistry 2, Chemical Centre, University of Lund, S-221 00 Lund, Sweden

Received 9 March 1992

¹⁵N has been uniformly incorporated into the EF-hand Ca^{2*} -binding protein calbindin D_{9k} so that heteronuclear experiments can be used to further characterize the structure and dynamics of the apo, $(Cd^{2*})_1$ and $(Ca^{2*})_2$ states of the protein. The ¹⁵N NMR resonances were assigned by 2D ¹⁵N-resolved ¹H experiments, which also allowed the identification of a number of sequential and medium-range ¹H-¹H contacts that are obscured by chemical shift degeneracy in homonuclear experiments. The ¹⁵N chemical shifts are analyzed with respect to correlations with protein secondary structure. In addition, the changes in ¹⁵N chemical shift found for the apo- $(Cd^{2*})_1$ - $(Ca^{2*})_2$ binding sequence confirm that the effects on the protein are mainly associated with chelation of the first ion.

Nuclear magnetic resonance; Protein structure; Ca2+-binding protein

1. INTRODUCTION

The calcium ion is a ubiquitous 'second messenger' involved in a variety of cellular processes, including cell division and growth, muscle contraction, secretion, and certain metabolic processes [1–3]. Calcium-binding proteins play a central role in the translation of the Ca²⁺ signal, undergoing Ca²-dependent conformational changes that modulate their interaction with other cellular components. This family of proteins is characterized by a common helix-loop-helix structural motif in their binding sites, termed the EF-hand [4]. Aside from regulatory functions, EF-hand Ca²⁺-binding proteins are involved in transport and buffering of Ca²⁺ within the cell [5]; calbindin D_{9k} is one such example [6].

The structure of Ca^{2+} -loaded calbindin D_{9k} has been determined by X-ray crystallography [7]; the protein comprises four helices (numbered I to IV) and two calcium-binding loops arranged in two EF-hand motifs, with a nine-residue linker between them. Our research program involves determining the effects of Ca^{2+} -bind-

Abbreviations: NMR, nuclear magnetic resonance; 1D, one-dimensional; 2D, two-dimensional; FID, free induction decay; HSQC, heteronuclear single quantum coherence; NOE, nuclear Overhauser effect; NOESY, 2D NOE spectroscopy; TOCSY, total correlation spectroscopy; P43G, the sequence of the minor A form of bovine calbindin D_{q_k} produced by recombinant DNA methodology, with an additional methionine at the N-terminus and the Pro-⁴³ \rightarrow Gly mutation; IPTG, isopropyl β -D-thiogalactopyranoside; RMSD, root mean square difference.

Correspondence address: W.J. Chazin, Dept. Molecular Biology (MB-2), 10666 N. Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA. Fax: (1) (619) 554-9822.

ing on the structure and dynamics of the protein and identifying the molecular basis for the relative affinity, ion selectivity and cooperativity in the binding of Ca²⁺ [8-10]. The assignment of the ¹H resonances and identification of the secondary structure and global folding pattern in the apo and (Ca2+)2 states have been reported [11,12]. To address the question of the cooperativity, the (Cd²⁺), state has also been studied [13]. Since the binding of Cd2+ is sequential, with the first ion entering the C-terminal EF hand [13,14], (Cd2+)1 calbindin D9k serves as a model for the thermodynamically inaccessible (Ca²⁺); state. As part of our effort to fully characterize the structure and dynamics of calbindin D_{9k} samples of the protein enriched in 15N have been prepared. This report briefly describes some of the details of the protein production, the sequence-specific assignment of the 15N NMR resonances in the apo, $(Cd^{2+})_1$ and $(Ca^{2+})_2$ states, and an analysis of the ¹⁵N chemical shifts for the three states of metal occupancy.

2. MATERIALS AND METHODS

The general methods utilized for synthesis of the calbindin D_{0k} gene, expression in $E.\ coli$, and protein purification have been reported [15,16]. The utilization of a new expression system [17] for producing ^{15}N labeled protein is described below in section 3. The (99%- $^{15}NH_4$)2SO₄ and 99%- $^{15}NH_4$ Cl was purchased from M.S.D. Isotopes (Montréal, Canada). Decalcification and titration of the protein with Cd²⁺ were performed as described previously [13,18]. The apo, (Cd²⁺)₁ and (Ca²⁺)₂ samples were prepared from 16–20 mg of lyophilized protein, dissolved in 420 μ l of 95% $H_2O/5\%$ 2H_2O (4–5 mM) and adjusted to pH 6.0 by the addition of μ l amounts of 1 M HCl or 1 M NaOH.

The NMR spectra were acquired on Bruker AMX 500 and AM 600 spectrometers, at 300 K. The H_2O peak was suppressed by low power

coherent irradiation of the water resonance for 1.2-1.5 s prior to each pulse train, or by the use of spin-lock purge pulses during the inept coherence transfer steps [19]. 15N decoupling was achieved with GARP-1 phase-modulated irradiation [20]. The phase-sensitive data were obtained using the time proportional phase incrementation method for quadrature detection in the ω, dimension [21]. H chemical shifts were referenced to the H₂O peak at 4.75 ppm, and the ¹⁵N shifts referenced indirectly to liquid NH₃ by using the ¹H frequency of the H₂O resonance [22,23]. HSQC ¹⁵N-¹H correlation, HSQC-NOESY and HSQC-TOCSY spectra were acquired using standard pulse sequences [24,25], 32 or 64 transients/t, value were acquired with 4096 complex data points over a spectral width of 12,500 Hz in the ¹H dimension. In the ^{15}N dimension, 400 to 600 increments of t_1 were recorded with t_{1max} ranging from 110 to 150 ms. The mixing time used in the HSQC-NOESY spectra was 150 ms. HSQC-TOCSY spectra were recorded with an 80 ms DIPSI-2 spin-lock pulse train [26] at a field strength of 9.5 kHz.

NMR data were processed with the FTNMR software provided by Dr. Dennis Hare (Hare Research Inc., Woodinville, WA) and modified by Dr. Mark Rance. Artifacts arising from incompletely suppressed solvent resonances were minimized by removing the low frequency components of each FID prior to ω_2 processing [27]. The spectra were processed with gaussian or sinebell window functions to improve resolution. After the ω_2 transform, the rows of data were baseline-corrected by a simple two-point spline routine to remove linear offsets. For the analysis of chemical shifts, sinusoidal curve fitting was performed using TEMPLEGRAPH (Mihalisin Associates, Temple University, Ambler, PA 19002), the amplitude, offset, phase and period were initially adjusted manually for a best fit, then refined using non-linear least squares fitting.

3. RESULTS AND DISCUSSION

¹⁵N-Enriched calbindin D_{9k} was expressed from an E. coli strain containing the plasmid pRCB [17]. In addition to the calbindin D_{9k} gene, the tac promoter, and the lacIQ gene, the pRCB plasmid contained a temperature-sensitive mutation in the copy number control region. With this heat- and IPTG-inducible expression system, the total E. coli protein expression was 5-10fold higher than the originally reported expression system [15]. The bacteria were grown in a variation of M9 media [28], using 1.0 g/l (99%-15NH₄)₂SO₄ or 0.75 g/l 99%-15NH₄Cl as the sole nitrogen source. The only modification to this protocol was that tap water, rather than distilled water, was used to prepare the media since this was found to almost double the yield of calbindin D_{9k}. Subsequent protein purification followed the procedure described in Chazin et al. [29], resulting in 30-40 mg of uniformly 15N-labeled calbindin D_{9k} per litre of medium, or 50-70% of the yield obtained with nutrientrich broth. Examination of resolved amide proton resonances by 1D 1H NMR revealed that 15N had been incorporated to greater than 95% atom.

In general, the ¹⁵N-¹H correlation spectra of apo, (Cd²⁺)₁ and (Ca²⁺)₂ calbindin D_{9k} were well resolved. Many of the ¹⁵N resonances could be assigned directly in these spectra because the ¹H chemical shifts of the corresponding amide protons are unique [11–13]. The sequence-specific assignments for most of the remaining ¹⁵N resonances were readily obtained from the relayed peaks observed in the HSQC-TOCSY by matching

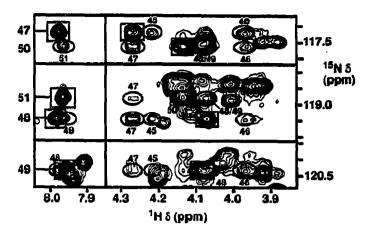


Fig. 1. Sections of the 600 MHz 2D HSQC-NOESY spectrum of apo calbindin D_{0k} acquired at pH 6.0 and 300 K, with a mixing time of 150 ms, depicting NOEs involving the amide protons of residues Asp-⁴⁷, Glu-⁴⁸, Leu-⁴⁹, Phe-⁵⁰ and Glu-⁵¹. Sequential d_{NN} cross peaks and ¹⁵N-¹H autocorrelation peaks are shown in the left panel and intraresidue, sequential and medium range d_{aN} cross peaks are shown in the right panel. Boxes are drawn around the intra-residue peaks, and the sequential and medium range peaks are circled. The NOEs between protons in residue i and residue j are identified by the labels along the left hand axis (corresponding to the resonance position of the ¹⁵N attached to amide proton in residue i) and the labels adjacent to the circles (corresponding to residue j). In the left panel the contours are drawn at eight-times higher intensities than in the right panel. The tick marks along the ¹⁵N axis are drawn every 0.25 ppm.

backbone and sidechain connectivities to the known ¹H chemical shifts. Severe resonance overlap was observed only for Lys-⁴¹/Lys-⁵⁵ and Leu-²⁸/Ser-⁶² in the apo state, Phe-⁶⁶/Leu-³² and Leu-³⁹/Ile-⁹ in the (Cd²⁺), state, and Glu-²⁶/Ser-⁴⁴ in the (Ca²⁺)₂ state. In these few cases of extreme resonance degeneracy the assignments were made from sequential NOEs in the HSQC-NOESY spectrum. The complete list of ¹⁵N assignments for all three states of the protein is given in Table I.

The HSQC-NOESY spectrum also provides a powerful method for clarification of ambiguities in ¹H chemi-

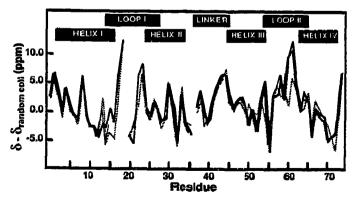


Fig. 2. Variation in the 15 N chemical shifts of the backbone amides in the apo, $(Cd^{2+})_1$ and $(Ca^{2+})_2$ states of calbindin D_{vk} . The observed 15 N chemical shifts, adjusted by subtracting the random-coil shifts [30,31]. The data are drawn with a dashed line for the apo state, with a thin solid line for the $(Cd^{2+})_1$ state and with a thick solid line for the $(Ca^{2+})_2$ state.

cal shift and NOESY cross-peak assignments. An example is shown in Fig. 1 for helix III of apo calbindin D_{9k} , where there are assignment problems in the ¹H spectrum caused by overlap of the amide protons of Asp-⁴⁷, Glu-⁴⁸, Leu-⁴⁹ and Glu-⁵¹ [11]. The corresponding ¹⁵N chemical shifts of these residues are seen to be well dispersed in the HSQC-NOESY spectrum, allowing the identification of a number of previously unassigned sequential and medium-range d_{NN} and $d_{\alpha N}$ NOEs. We have found the HSQC-NOESY spectra to be extremely valuable for identifying additional NOEs, with in excess of 100 found for both the apo the Ca²⁺-loaded states (the analysis for the (Cd²⁺)₁ state is still in progress).

The ¹⁵N resonance assignments provide an opportunity to search for correlations between ¹⁵N chemical shifts and structural elements of the protein, and to analyze the response of the ¹⁵N chemical shift to ion binding. Studies by Glushka et al. [30] have shown that the ¹⁵N chemical shift in peptides are dominated by the identity of the adjacent residues; consequently, to detect other influences, the chemical shifts have to be plotted as the secondary shift, the observed experimental values minus the random coil shifts [30,31]. The most striking feature in the plots of the backbone ¹⁵N resonances secondary shifts of calbindin D_{9k} (Fig. 2) is the similar-

ity of the profiles for each of the helical regions in the three metal-bound states, which indicates that there are no substantial changes in the local backbone conformation of the helices in response to ion binding. These results, and similar analyses of amide ${}^{1}H$ chemical shifts [11,13], confirm earlier conclusions about the overall similarity of the apo, (Cd^{2+}) and $(Ca^{2+})_2$ states [18]. Note that in the present study, the data were collected under identical conditions for all three states of the protein, thereby removing any possible uncertainty due to the small differences in pH [13] or structure (wild-type vs. Pro- $^{43}\rightarrow$ Gly mutant) [13], as in the earlier studies.

The ¹⁵N chemical shifts have been further analyzed by the method of Kuntz and co-workers [32] who reported that the variation of ¹H chemical shift is periodic in a series of helical peptides and in helical segments of protein, and that ¹⁵N chemical shifts also exhibit periodicity in helices, although the latter was based on a limited data set. Periodicity is readily identified in the ¹H chemical shifts in helices I, II and III in all three states of calbindin D_{9k} (eg. Fig. 3), but not in helix IV. The periodicities derived from non-linear regression analysis are all between 3 and 4 residues per cycle (Table II), paralleling the structural periodicity of helices. However, there is no correlation apparent between the value

Table 1 ^{15}N chemical shifts of calbindin D_{9k} at pH 6.0, 300 $K^{\prime\prime}$

	Ca2	Cdl	Apo		Ca2	Cdl	Apo		Ca2	Cdl	Apo
Lysb	123.55	123.67	nd	Glu ²⁷	119.84	119.09	119.96	Leu ⁵³	115,38	115,57	118.59
Ser ²	119.11	118.99	119.04	Leu ²⁸	118.94	119.57	120.35	Asp ⁵⁴	117.62	117.86	118.85
Glu ⁴	117.62	117.40	116.82	Lys ²⁹	119.62	119.21	118.50	Lys55	126,49	126.29	120.20
Glu ⁵	121.76	121.62	121.77	Leu ³⁰	118.00	118.03	118.81	Asn ⁵⁶	111.86	113.21	116.50
Leu ⁶	120.05	119.86	119.15	Leu ³¹	123,86	123.86	124.31	Asn ⁵⁶ N	113.52	112.82	112.75
Lys ⁷	120.68	120.63	120.79	Leu ³²	119.59	119.84	120.39	Gly ⁵⁷	108,87	109.16	108.58
Gly ⁸	105.01	105.04	104.87	Gln ³³	114.05	114.12	113.76	Asp ⁵⁸	118.51	119.38	119.94
Ile ⁹	122.49	122.41	121.64	Gln ³³ N	110.05	110.18	110.08	Gly ⁵⁹	112.85	112.65	109.25
Phe ¹⁰	119.96	119.69	119.68	Thr ³⁴	110.46	110.77	112.30	Glu ⁶⁰	117,88	118.27	118.65
Glu ¹¹	115,04	115.21	115.63	Glu ³⁵	115.88	116.05	116.26	Val ⁶¹	126,25	126.29	118.22
Lys ¹²	118.73	118.56	118.41	Phe ³⁶	114.34	114.51	115.95	Ser ⁶²	126,46	124.85	120.35
Tyr ⁱ³	114.75	114,82	115.39	Ser ¹⁸	113.54	113.45	112.95	Phe ⁶³	122.92	122.68	122.14
Ala ¹⁴	118.97	121,57	123.94	Leu ³⁹	122.46	122.46	120.98	Glu ⁶⁴	118.15	118.03	118.17
Ala ¹⁵	116.77	113.76	114,19	Leu ⁴⁰	116.68	116.75	118.35	Glu ⁶⁵	120.99	119.93	118.68
Lys ¹⁶	119.86	116.80	115.82	Lys ⁴¹	119.93	119.93	120.26	Phe ⁶⁶	119.38	119.76	121.40
Glu ¹⁷	115.81	nd	113.41	Gly ⁴²	108.51	108.15	108.60	Gln ⁶⁷	115.09	115.21	116.70
Gly ¹⁸	112.87	109.23	108.21	Gly ⁴³	109.70	108.60	109.10	Gln ⁶⁷ N	111,34	110,98	110.23
Asp ¹⁹	127.69	126.10	126.36	Ser44	117.06	116.94	116.37	Val ⁶⁸	117,35	116.94	118.85
Asn ²¹	114,51	114,65	114.87	Thr ⁴⁵	113.67	113.86	115.11	Leu ⁶⁹	120.05	119.91	120.90
Asn ²¹ N	114.33	114.89	115.09	Leu ⁴⁶	122.15	122.08	122.09	Val ⁷⁰	116.17	115.33	115.82
Gln ²²	113.95	116.58	117.48	Asp ⁴⁷	116.68	116.82	117,39	Lys ⁷¹	117.67	118.03	120.53
Gln ²² N	109.62	106,34	119.38	Glu ⁴⁸	119.33	119.38	119.15	Lys ⁷²	116.77	116.73	116.77
Leu ²³	125.38	120.27	120,33	Leu ⁴⁰	121.52	121.35	120.66	Ile ⁷³	114,29	114.48	111.51
Ser ²⁴	120.87	nd	119,31	Phe ⁵⁰	119.02	118.97	117.61	Ser ⁷⁴	117.04	117.38	116.41
Lys ²⁵	121,79	122,20	121,27	Glu ⁵¹	115.42	115.35	119.18	Gln ⁷⁵	125.98	126.10	125.90
Glu ²⁶	116.94	116,65	116.78	Glu ⁵²	118.05	117,96	117.65	Gln ⁷⁵ N	111.66	111.77	111.89

^{*}Chemical shifts are referenced to liquid ammonia as described in Section 2 and are accurate to ± 0.04 ppm. The side chain amides are identified by the listings with N after the residue number. The resonance for which a chemical shift could not be determined are labeled nd.

The expression protocol results in an N-terminial methionine which is not cleaved from the protein (designated Met⁰), hence residues 1–75 all

contain secondary amide groups. The resonances for Lys¹ in the (Ca²+)₂ and (Cd²+)₁ state were only observed in HSQC correlation spectra acquired without presuration of the water resonance.

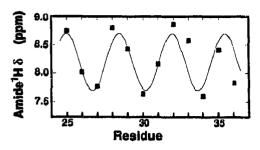


Fig. 3. Plots of ¹H chemical shift against residue number for helix II of $(Ca^{2+})_2$ calbindin D_{9k} . The curve represents a sinusoid calculated from a non-linear fit to the data of an equation of the form $y = A + B \sin(Cx + D)$, where the parameters to be optimized (A, B, C, D) represent the offset, amplitude, frequency and phase, respectively. The experimental data points are indicated by filled squares. The amplitudes and periodicities resulting from the fits of the four helices are listed in Table II.

of the chemical shift and the relative surface/interior location of the residue. The absence of periodicity in helix IV probably reflects the non-uniform nature of the hydrogen-bonding pattern, compounded by fraying at the C-terminus. Having firmly established the periodic pattern of the ¹H chemical shift of calbindin D_{9k}, we proceeded to the corresponding analysis of the ¹⁵N chemical shifts. After extensive efforts at curve fitting both the observed and secondary chemical shifts, a periodic pattern could only be detected for helix II. These results imply that the ¹⁵N chemical shift may prove to be less informative than Kuntz and co-workers had anticipated.

The comparisons of pairwise RMSD of ¹⁵N and ¹H chemical shifts between the three states of the protein (Fig. 4) provide insights into the structural and dynamical consequences of ion binding, as summarized in the following. (i) The magnitude of the chemical shift differ-

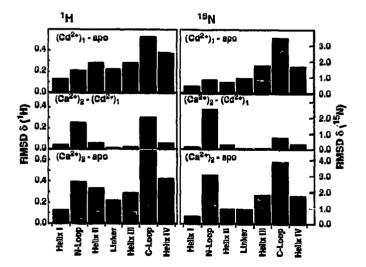


Fig. 4. Pairwise RMSD of 1H and ^{15}N chemical shift between the apo, $(Cd^{2+})_1$ and $(Ca^{2+})_2$ states of calbindin D_{0k} . The protein is divided into seven structural elements as follows: Ser^{-2} – Tyr^{-13} (helix I), Ala^{-14} – Glu^{-27} (N-loop), Leu^{-28} – Glu^{-35} (helix II), Phe^{-36} – Ser^{-44} (linker), Thr^{-45} – Leu^{-53} (helix III), Asp^{-54} – Glu^{-65} (C-loop) and Phe^{-66} – Ser^{-74} (helix IV).

Table 11

Amplitudes and periodicities of the amide proton chemical shifts observed in (Ca²⁺)₂, (Cd²⁺)₁ and apo calbindin D_{9k}

	Hel	ix I	Heli	x II	Helix	111	Helix IV		
	A (ppm)	P (res)	A (ppm)	P (res)	A (ppm)	P (res)	A (ppm)	P (res)	
Apo	0.60	3.81	0.62	3.24	0.23	3.49	0.53	3.41	
$(Cd^{2*})_1$	0.37	3,84	0,56	3.37	0.54	3.95	nd	nd	
$(Ca^{2*})_2$	0.37	3.72	0.50	3.47	0.54	3.92	nd	nd	

"Helices for which no periodicity was observed are denoted by nd. Note that in the crystal structure of $(Ca^{2+})_2$ calbindin D_{9k} residues Ala¹⁴-Lys¹⁶, Lys²⁵-Glu²⁷, Asp⁵⁴-Lys⁵⁵ and Phe⁶³-Glu⁶⁵, are in both helices and binding loops. For the purposes of calculating the chemical shift RMSDs, we have included these residues only in the loop sections.

ences between the three states is greatest in the binding loops, which implies that the largest structural and/or dynamical changes in the protein induced by ion binding occur in the binding loops. (ii) The chemical shift differences of the residues in the N-terminal loop are greater when an ion binds in that site, than when an ion binds in the C-terminal site, and the converse is true for the residues in the C-terminal loop; as expected the direct effect of ion binding is greater than the effect induced by binding in the other site. (iii) The magnitudes of the chemical shift changes associated with $apo \rightarrow (Cd^{2+})_1$ are larger than those associated with $(Cd^{2+})_1 \rightarrow (Ca^{2+})_2$; for the binding sequence in which the ion first binds in the C-terminal site, binding of the first ion induces a larger proportion of the structural and/or dynamical changes than binding of the second ion. (iv) The first ion-binding step induces appreciable chemical shift changes in all parts of the protein, whereas the changes associated with the second step are localized to the binding loops only. This observation is fully consistent with the previous analysis of this system by 'H NMR and has important implications for the molecular basis for the cooperativity of Ca²⁺-binding in calbindin D_{0k} , as discussed in [13].

The availability of the ¹⁵N chemical shift assignments now sets the stage for a series of multi-dimensional heteronuclear NMR experiments to clarify ¹H spectral ambiguities, obtain additional distance and dihedral angle constraints for structure calculations, and to accurately measure amide proton exchange rates and ¹⁵N relaxation parameters. These data will allow for a more complete characterization of the consequences of Ca²⁺-binding on the structure and dynamics of calbindin D_{9k} than that which is possible by homonuclear ¹H NMR alone.

Acknowledgements: We thank Dr. Mark Rance and Dr. Arthur G. Palmer III for continued support with experimental methods, and Dr. Lawrence MacIntosh for providing a detailed description of his expression and growth procedures prior to publication. This work was

supported by the National Institutes of Health (Grant GM 40120 to W.J.C.), the American Cancer Society (fellowship JFRA-294 to W.J.C.), and the Swedish Natural Science Research Council (graduate fellowships to J.K., M.A.).

REFERENCES

- [1] Rasmussen, H. (1986) New Engl. J. Med. 314, 1094-1101.
- [2] Rasmussen, H. (1986) New Engl. J. Med. 314, 1164-1170.
- [3] Rasmussen, H. (1989) Sci. Am. 261, 66-73.
- [4] Kretsinger, R.H. (1972) Nature New Biol. 240, 85-88.
- [5] Da Silva, A.C.R. and Reinach, F.C. (1991) Trends Biochem. Sci. 16, 53-57.
- [6] Christakos, S., Gabrielides, C. and Rhoten, W.B. (1989) Endocr. Rev. 10, 3-26.
- [7] Szebenyi, D.M.E. and Moffat, K. (1986) J. Biol. Chem. 261, 8761-8777.
- [8] Forsén, S., Vogel, H. and Drakenberg, T. (1986) in: Calcium and Cell Function, vol. 6 (Cheung, W.Y., ed.) pp. 113-157, Academic Press, New York.
- [9] Linse, S., Brodin, P., Drakenberg, T., Thulin, E., Sellers, P., Elmdén, K., Grundström, T. and Forsén, S. (1987) Biochemistry 26, 6723-6735.
- [10] Williams, T.C., Corson, D.C., Sykes, B.D. and MacManus, J.P. (1987) J. Biol. Chem. 262, 6248-6256.
- [11] Skelton, N.J., Forsén, S. and Chazin, W.J. (1990) Biochemistry 29, 5752-5761.
- [12] Kördel, J., Forsén, S. and Chazin, W.J. (1989) Biochemistry 28, 7065-7074.
- [13] Akke, M., Forsén, S. and Chazin, W.J. (1991) J. Mol. Biol. 220, 173–189.
- [14] Vogel, H. and Forsen, S. (1987) in: Biological Magnetic Resonance, vol. 7 (Berliner, L.J. and Reuben, J., eds.) pp. 249-309, Plenum, New York.
- [15] Brodin, P., Grundström, T., Hofmann, T., Drakenberg, T., Thulin, E. and Forsén, S. (1986) Biochemistry 25, 5371-5377.

- [16] Chazin, W.J., Kördel, J., Drakenberg, T., Thulin, E., Hofmann, T. and Forsén, S. (1989) Biochemistry 28, 8646-8653.
- [17] Brodin, P., Drakenberg, T., Thulin, E., Forsén, S. and Grundström, T. (1989) Prot. Eng. 2, 353-358.
- [18] Skelton, N.J., Kördel, J., Forsén, S. and Chazin, W.J. (1990) J. Mol. Biol. 213, 593-598.
- [19] Messerle, B.A., Wider, G., Otting, G., Weber, C. and Wüthrich, K. (1989) J. Magn. Reson. 85, 608-613.
- [20] Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson. 64, 547-552.
- [21] Marion, D. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun. 113, 967-974.
- [22] Live, D.H., Harris, D.G., Agosta, W.C. and Cowburn, D. (1984) J. Am. Chem. Soc. 106, 1939-1941.
- [23] Bax, A. and Subramanian, S.J. (1986) J. Magn. Reson. 67, 565-569.
- [24] Norwood, T.J., Boyd, J., Heritage, J.E., Soffe, N. and Campbell, I.D. (1990) J. Magn. Reson. 87, 488-501.
- [25] Bax, A., Ikura, M., Kay, L.E., Torchia, D.A. and Tschudin, R. (1990) J. Magn. Reson. 86, 304-318.
- [26] Shaka, A.J., Lee, C.J. and Pines, A. (1988) J. Magn. Reson. 77, 274-293.
- [27] Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn. Reson. 85, 393-399.
- [28] McIntosh, L.P. and Dalquist, F.W. (1990) Quart. Rev. Biophys. 23, 1-38.
- [29] Chazin, W.J., Kördel, J., Drakenberg, T., Thulin, E., Brodin, P., Grundström, T. and Forsén, S. (1989) Proc. Natl. Acad. Sci. USA 86, 2195-2198.
- [30] Glushka, L.L., Lee, M., Coffin, S. and Cowburn, D. (1989) J. Am. Chem. Soc. 111, 7716-7722.
- [31] Glushka, L.L., Lee, M., Coffin, S. and Cowburn, D. (1990) J. Am. Chem. Soc. 112, 2843.
- [32] Kuntz, I.D., Kosen, S. and Craig, E.C. (1991) J. Am. Chem. Soc. 113, 1406–1408.